HDR-UK

Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } Twitter thread by Prof Ami Banerjee summarising key results

Digital ethnicity data in population-wide electronic health records in England: a description of completeness, coverage, and granularity of diversity

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } 📺 BHF Data Science Centre seminar by Dr Sara Khalid

Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } 📺 BHF Data Science Centre seminar by Dr Samantha Ip & Dr Hoda Abbasizanjani

COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } Twitter thread summarising key results

BHF Data Science Centre Research Showcase: Phenotyping COVID-19: Insights from linked data for 56 million individuals

Evaluation of antithrombotic use and COVID-19 outcomes in a nationwide atrial fibrillation cohort

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } Twitter thread

Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } ❗ Now published in Journal of the Royal Society of Medicine

The adverse impact of COVID-19 pandemic on cardiovascular disease prevention and management in England, Scotland and Wales: A population-scale descriptive analysis of trends in medication data

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } 📺 BHF Data Science Centre seminar by Prof Reecha Sofat and Dr Caroline Dale

A nationwide deep learning pipeline to predict stroke and COVID-19 death in atrial fibrillation

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center }

Association of COVID-19 with arterial and venous vascular diseases: a population-wide cohort study of 48 million adults in England and Wales

section { background: white; color: black; border-radius: 1em; padding: 1em; left: 50% } #inner { display: inline-block; display: flex; align-items: center; justify-content: center } 📺 BHF Data Science Centre seminar by Dr Samantha Ip & Dr Hoda Abbasizanjani